期刊简介
本刊是目前国内关于这门学科唯一的学术性期刊。刊用论文出版周期一般不超过半年,被国内外学者认为是信息量大、内容新颖、选题优秀的特色科技期刊。《中国科学引文数据库》来源期刊,《中国学术期刊综合评价数据库》全文收录期刊,万方数据系统和长江数据系统最早纳入的科技期刊。
往期目录
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
-
2019
首页>数理医药学杂志

- 杂志名称:数理医药学杂志
- 主管单位:湖北省教育厅
- 主办单位:武汉大学,中国工业与应用数学学会,医药数学专业委员会
- 国际刊号:1004-4337
- 国内刊号:42-1303/R
- 出版周期:月刊
期刊荣誉:中国医药数学会颁发的《中国优秀特色期刊奖》、《现代计量医学最佳论坛奖》期刊收录:知网收录(中), 国家图书馆馆藏, 维普收录(中), 上海图书馆馆藏, 万方收录(中)
关键词:Neural Networks(NN) Cinnamamider Q.S.A.R
摘要:Neural Networks(NN) Method was used to study The structure-activity relationship(S.A.R) of cinnamamide derivatives. The relationship between biological activity(P.C) and thosc parameters such as the partition coefficients(log p octanol/water) of the compounds Hammett δ constants and steric parameter(M.R) of cinnamamides were investigated by the modified backpropagation (MBP) Neural Netwoks. The biological activity of cinnamamides derivatives thus estimated and predicted 100% fit with MLP Method. The resalts obtined by the developed MBPNN Method Seem to be better than those by Multivariate linear regression(MLR). The neural Networks Method might therefore be regarded as an excellent and effective chemometric Modelling technique for estim ating and predicting biological cativity on basic Q.S.A.R studies.
友情链接